Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Genet. mol. biol ; 30(3,suppl): 713-733, 2007. ilus, tab
Article in English | LILACS | ID: lil-467252

ABSTRACT

Plant hormones play a crucial role in integrating endogenous and exogenous signals and in determining developmental responses to form the plant body throughout its life cycle. In citrus species, several economically important processes are controlled by phytohormones, including seed germination, secondary growth, fruit abscission and ripening. Integrative genomics is a powerful tool for linking newly researched organisms, such as tropical woody species, to functional studies already carried out on established model organisms. Based on gene orthology analyses and expression patterns, we searched the Citrus Genome Sequencing Consortium (CitEST) database for Expressed Sequence Tags (EST) consensus sequences sharing similarity to known components of hormone metabolism and signaling pathways in model species. More than 600 homologs of functionally characterized hormone metabolism and signal transduction members from model species were identified in citrus, allowing us to propose a framework for phytohormone signaling mechanisms in citrus. A number of components from hormone-related metabolic pathways were absent in citrus, suggesting the presence of distinct metabolic pathways. Our results demonstrated the power of comparative genomics between model systems and economically important crop species to elucidate several aspects of plant physiology and metabolism.

2.
Genet. mol. biol ; 30(3,suppl): 780-793, 2007. ilus, tab
Article in English | LILACS | ID: lil-467257

ABSTRACT

Studies employing model species have elucidated several aspects of photoperception and light signal transduction that control plant development. However, the information available for economically important crops is scarce. Citrus genome databases of expressed sequence tags (EST) were investigated in order to identify genes coding for functionally characterized proteins responsible for light-regulated developmental control in model plants. Approximately 176,200 EST sequences from 53 libraries were queried and all bona fide and putative photoreceptor gene families were found in citrus species. We have identified 53 orthologs for several families of transcriptional regulators and cytoplasmic proteins mediating photoreceptor-induced responses although some important Arabidopsis phytochrome- and cryptochrome-signaling components are absent from citrus sequence databases. The main gene families responsible for phototropin-mediated signal transduction were present in citrus transcriptome, including general regulatory factors (14-3-3 proteins), scaffolding elements and auxin-responsive transcription factors and transporters. A working model of light perception, signal transduction and response-eliciting in citrus is proposed based on the identified key components. These results demonstrate the power of comparative genomics between model systems and economically important crop species to elucidate several aspects of plant physiology and metabolism.

3.
Genet. mol. biol ; 30(3,suppl): 794-809, 2007. graf, tab
Article in English | LILACS | ID: lil-467258

ABSTRACT

The endogenous time-keeping mechanism is responsible for organizing plant physiology and metabolism according to periodic environmental changes, such as diurnal cycles of light and dark and seasonal progression throughout the year. In plants, circadian rhythms control gene expression, stomatal opening, and the timing component of the photoperiodic responses, leading to enhanced fitness due to increased photosynthetic rates and biomass production. We have investigated the citrus genome databases of expressed sequence tags (EST) in order to identify genes coding for functionally characterized proteins involved in the endogenous time-keeping mechanism in Arabidopsis thaliana. Approximately 180,000 EST sequences from 53 libraries were investigated and 81 orthologs of clock components were identified. We found that the vast majority of Arabidopsis circadian clock genes are present in citrus species, although some important components are absent such as SRR1 and PRR5. Based on the identified transcripts, a model for the endogenous oscillatory mechanism of citrus is proposed. These results demonstrate the power of comparative genomics between model systems and economically important crop species to elucidate several aspects of plant physiology and metabolism.

4.
Genet. mol. biol ; 30(3,suppl): 888-905, 2007. ilus, tab, graf
Article in English | LILACS | ID: lil-467268

ABSTRACT

Water deficit is one of the most critical environmental stresses to which plants are submitted during their life cycle. The evolutionary and economic performance of the plant is affected directly by reducing its survival in the natural environment and its productivity in agriculture. Plants respond to water stress with biochemical and physiological modifications that may be involved in tolerance or adaptation mechanisms. A great number of genes have been identified as transcriptionally regulated for water deficit. EST sequencing projects provide a significant contribution to the discovery of expressed genes. The identification and determination of gene expression patterns is important not only to understand the molecular bases of plant responses but also to improve water stress tolerance. In our citrus transcriptome survey we have attempted to identify homologs to genes known to be induced and regulated under water stress conditions. We have identified 89 transcripts whose deduced amino acid sequences share similarities with proteins involved in uptake and transport of water and ion, 34 similar to components of the osmolyte metabolism, 67 involved in processes of membranes and proteins protection and 115 homologs of reactive oxygen species scavenger. Many drought-inducible genes identified are known to be regulated by development, salt, osmotic and low temperature. Their possible roles in specific or general mechanisms of water stress citrus responses are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL